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Abstract 

Previously reported experimental methods for X-ray 
phase determination are analyzed using the plane-wave 
dynamical theory of X-ray diffraction. The relation 
between the dispersion surface and the phases are 
considered as well as the influence of the crystal 
rotation relative to the Ewald sphere on the diffraction 
line profile. It is shown that the phase information 
obtained from the intensity of three-beam Borrmann 
diffraction may get lost due to crystal thickness effects. 
Three-beam Bragg reflections, either Umweg or 
Aufhellung, give optimal conditions to reveal the 
phases, provided that the relative rotation of the 
additional reciprocal-lattice point entering or leaving 
the Ewald sphere is known. With the exception of 
special situations, N-beam cases with N > 3 are found 
not to be suitable for phase determination, since they 
involve high-order phase products and thus complicate 
the experimental determination of the phases. 

1. Introduction 

The experimental determination of X-ray reflection 
phases, the so-called 'X-ray phase problem', is one of 
the unsolved problems in crystallography as well as in 
X-ray physics. The difficulties in solving this problem 
result from the fact that the phase information is lost in 
two-beam diffraction (Ewald & Heno, 1968). 

In contrast to X-rays, the reflection phases of visible 
light are easily determined by the interference of two 
coherent beams coming from a single source or a pair 
sources, though the difficulties still exist. Optical 
holography is a well known example for using the 
phase contrast of two coherent beams, an incident 
beam and a reference beam. 

The coherent dynamical interaction in X-ray mul- 
tiple diffraction has long been considered to provide 
clues for phase determination (Lipscomb, 1949; Ecks- 
tein, 1949; Fankuchen, 1949). X-ray multiple diffrac- 
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tion is analogous to optical holography, since one of the 
diffracted X-ray beams can be treated as a reference 
for the other beam. The relative phase difference 
between the two beams modifies the diffracted intensity 
of the reference beam. Phase information could 
therefore be extracted from the intensity variation on 
the reference beam. Efforts have been made, for 
instance, by using a three-beam Pendell6sung effect 
(Hart & Lang, 1961), three-beam Borrmann diffraction 
(Post, 1977), two overlapped three-beam 
Umweganregungen treated as a four-beam case (Chap- 
man, Yoder & Colella, 1981) and four- and five-beam 
diffractions (Jagodzinski, 1980). Similar investigations 
have also been carried out for electron diffraction, for 
example, by Kambe & Miyake (1954), Miyake & 
Kambe (1954), Kambe (1957), Berndt & Doll (1976), 
and Madsen & Cotterill (1978). All these X-ray 
experiments involve directly or indirectly the rotation of 
the crystal lattice relative to the Ewald sphere. 
However, the influence of sense of this rotation with 
additional reciprocal-lattice point entering (incoming) 
or leaving (outgoing) the Ewald sphere on the diffracted 
intensity has never been considered explicitly. 

Recently, Chang (1981, 1982) pointed out that the 
three-beam multiple-reflected intensity profile depends 
not only on the sign, Sp. T, of the triplet phase product, 
but also on the sense of the crystal rotation, either 
incoming or outgoing. For centrosymmetric structures, 
the sign Sp, r is defined as 

Sp, r = S-n, Sn2 Sn,- n2, (1) 

where S_n., Sn2, and Sn_n2 are the signs of the 
structure factors of - - H 1 ,  H 2, and H 1 - H 2 reflections. 
Here H 1 is a symmetric Bragg reflection, the so-called 
primary reflection (Renninger, 1937; Moon & Shull, 
1964). H 2 is the additional reflection (the secondary 
reflection). The interaction reflection between HI and 
H 2 is H~ - -  H 2. A useful relation between Sp. r, the sign 
S L defined from diffraction line profiles, and the sense 
of rotation S R is established (Chang, 1981, 1982) for 
experimental determination of the phases. Demon- 
stration of this method in combination with the 
ordinary 'direct method' of structure determination has 
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been carried out on a conventional four-circle single- 
crystal diffractometer (Chang & Han, 1982). 

The purpose of this paper is to give an analysis to all 
of the present suggested experimental methods for 
phase determination using X-ray multiple diffraction, 
on the basis of the dynamical theory of X-ray 
diffraction. The justification and applicability of these 
methods are discussed. 

2. Dynamical theory for N-beam (N > 2) diffraction 

According to dynamical theory, X-ray reflection 
phases are always involved in the wavefields generated 
in crystals. N-beam (N > 2) dynamical diffractions are 
most suitable for meaningful phase determination, since 
the phase products of reflection sets whose vectors 
form a closed loop are independent of the choice of 
origin of the crystal unit cell. The dynamical theory of 
X-ray diffraction is needed for describing the wave- 
fields and hence for extracting the phase information 
from the N-beam interaction. 

The self-consistent two-beam dynamical theory was 
first derived by Ewald (1916 a,b, 1917, 1937) and 
modified by von Laue (1931), then generalized for 
N-beam cases by Kato (1958). Fairly complete 
references in relation to this subject can be found in the 
articles by von Laue (1960), James (1963), Batterman 
& Cole (1964), Kato (1974), Pinsker (1978), and 
Schwartz & Cohen (1977). Although there are differ- 
ent approaches (Colella, 1974; Kohn, 1979) for 
N-beam diffraction, we shall follow von Laue's (1931) 
treatment, which is most commonly used for N-beam 
dynamical calculation. 

In dynamical theory, diffraction of X-rays is 
described by Maxwell's equations for a medium with a 
periodic, complex dielectric constant. The solution of 
the equations, the wave field D, is assumed as a 
superposition of Bloch waves which satisfy Bragg's 
law, i.e. 

D = ~ Dnex  p {--2ni(Kn. r-- vt)}, (2) 
H 

where K n = K 0 + H. The vector H represents the 
reciprocal-lattice vector of H reflection. K 0 and K n are 
the wave vectors of the incident beam 0 and the 
reflected beam H in the crystal. D n is the dielectric 
displacement of the reflected beam H. 

The fundamental equation of the wavefield is derived 
from the solution of Maxwell's equations for each 
diffracted beam as 

where 

2en D n =  ~" q~n-n' Dn'lnl, (3) 
H '  

2e H = (K n. Kn)/k 2 -- 1, (4) 

@n-n' = (ez/mc2) (22/nv) F n - n '  ~ Fn -n ' / ) "  (5) 

Fn_ n, is the structure factor for the H -- H '  reflection. 
Dn,tn I is the vector component of D n perpendicular to 
K. .  k is equal to 1/~., where 2 is the vacuum 
wavelength of the X-ray used. e and m are the charge 
and mass of the electron• The vacuum velocity of light 
is c. The volume of the unit cell is V. The sum in (3) is 
taken over N reflections, i.e. O, H, . . . ,  and Q. 

Equation (3) involves 2N linear equations, when the 
polarization is considered. For simplicity and without 
losing significantly the generality, we will ignore the 
polarization. By combining (3) and (5), the funda- 
mental equation of the wavefield becomes 

Fn  F o -  2CoY . . .  Fn e n 

F Q F "Q _ n . . .  " F o -  2eo7// \L) Q / 

= 0 .  

(6) 

Equation (6) can be easily solved as a complex 
eigenvalue equation. The real parts of the eigenvalues 
yield the positions of the tie points (Ewald, 1917) on the 
N sheets of the dispersion surface. The imaginary parts 
determine the absorption coefficients. The corre- 
sponding eigenvectors give the ratios of the wavefield 
amplitudes between the diffracted and the incident 
beams. Each eigenvalue defines a type of wave 
propagation within the crystal, the so-called mode of 
propagation (Saccocio & Zajac, 1965). According to 
Pinsker (1978, p. 478) and Chang (1979), the total 
number, Neff, of effective modes involved in an N beam 
diffraction is Net r = N -  NBragg for a thick 
crystal with about gt > 10, where g and t are the linear 
absorption coefficient and the crystal thickness. NBragg 
is the number of Bragg reflections involved. For thin 
crystals, N modes must be considered. 

The normal components of the dielectric dis- 
placement and the tangential components of the electric 
and magnetic fields must be continuous at the crystal 
boundary to determine the wavefield amplitudes D 0, D n, 
• . . and DQ. However, the dielectric susceptibility is of 
the order of 10 -5 for X-rays; therefore, the boundary 
conditions can be replaced: the electric fields E in 
vacuum equal the dielectric displacements D inside the 
crystal (Kato, 1974). This implies that 

~" Do(j) = E o, 
J 

~'. D r ( j )  = O, for each transmitted beam T, 
J 

X DR (j) = ER, for each reflected beam R. 
J 

(7) 
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The summations are taken over the effective modes• 
The subscripts 0, T, and R indicate the direct incident, 
the transmitted, and the reflected beams, respectively. 
Setting E 0 equal to unity yields the reflected and 
transmitted intensities 

and 

I~  = IERI 2 (8) 

/ 
It(r) = 1~ " {Dr(j) exp [--2niK'r(j).r] 

\ 

x exp [--2nK~ (j). r] }) 2, (9) 
/ 

• tt where K r = K~.-  tK r. 
For an unpolarized incident beam the correlation 

between the crystal excitation by the (7 component of 
the incident wave (perpendicular to the two-beam plane 
of incidence) and by the n component (parallel to the 
plane of incidence) must be included in (7), (8) and (9). 
It is however a formidable task to obtain an analytical 
expression for the phase dependence of the diffracted 
intensities in M-beam cases. An attempt has been given 
by Ewald & Heno (1968). Explicit mathematical 
relations between the diffracted intensity and phases 
have not been obtained. 

The dispersion surface usually contains the infor- 
mation about the phases. Therefore, we will discuss in 
the following the relation between the phases and the 
dispersion surface in connection with the experimental 
methods for phase determination. 

3. Experimental methods for phase determination 

(a) Three-beam Borrmann diffraction 

For three-beam, 0, H and H' ,  Borrmann diffraction 
the dispersion surface can be described by the following 
equation: 

z + + 

+ 21F_nFn, Fn_u,I cos f l=  0, (10) 

with 

Sp, T = COS # ,  

where Z = F0 - 2e0 7. Equation (10) determines three 
values of X corresponding to three dispersion sheets. It 
has been shown (Post, 1977) that the location of these 
three dispersion sheets depends on the sign Sp. r, 
namely the invariant phast angle fl of the structure 
factor triplet F_,Fu,  F ,_ , , .  For a positive Sp.r, two of 
the three dispersion sheets are closer to the Laue point. 
For a negative Se, r two sheets are at positions away 
from the Laue point. Similar arguments have been 
given by Kambe (1957). 

Dispersion surface is a characteristic for a given 
reflection, radiation and crystal. The dispersion surface 
is the same for both (Laue) transmission and (Bragg) 
reflection, except that the entrance crystal surface 
relative to the X-ray beams is different. The entrance 
crystal surface is parallel and perpendicular to the 
reciprocal-lattice vector, for a symmetric Laue and a 
symmetric Bragg reflection, respectively. 

The intersection of the dispersion surface with the 
plane of incidence of the H reflection is shown 
schematically in Fig. l(a). The relation between the 
dispersion sheets and the angular deviation, AO, from 
the Bragg angle 0 of H reflection is seen. La and Lo are 
Laue and Lorentz points respectively. Branches 1 and 2 
are the distorted two-beam dispersion sheets of the H 
reflection. For a positive Sp, r, the third dispersion sheet 
(branch 3 +) lies in between Lo and branch 1. For a 
negative Sp. r, the third branch, 3% lies in between Lo 
and branch 2. 

The excitation of tie points by the incident wave is 
determined by the line normal to the crystal surface 
from the entrance points to fulfill the continuity of the 
tangential components of the wave vectors inside and 
outside the crystal at the crystal boundary. For a 
positive Sp, r and AO < 0, three tie points, R~, R 2, and 
R3, are  excited. Since the Poynting vectors at R 1 and R 2 
perpendicular to the corresponding dispersion sheets 
(Kato, 1958) point towards the direction of the incident 
beam, i.e. along LaO, these two modes associated with 
R~ and R 2 are more strongly excited than the mode at 
R 3. For AO > O, T 2 and T 3 are more excited than T 1. 
Similar situations occur at the crystal settings which 
are off the exact three-beam diffraction point (~ = 0). 
The angle ~0 is the azimuthal rotation angle of the third 
reciprocal-lattice point H '  around OH. The projection 
of Fig. 1 (a) on the plane perpendicular to and bisecting 
OH is shown in Fig. 1 (b). For ~0 < 0, tie points X1 and 
X 2 are more excited than X 2. For ¢p > 0, Y2 and I"3 are 

Crystal  Sur face Crysta l  Surface 
//////////////1//.// /i..11111111111///11/I 

P P H l~l ~ P ~Al Hl 
"I ~ , ~ VVl L2~ VV2, I 

I I a I i 
, La 

' L a  , r q  I ,k i 

~ \  , ' : J - - B r a n c h l  I ~ /', 
" - ~  'R I '  , ,T XI', ' ', . ~'~"~ i ~  ~ i Y 2  Branch 3 

i , i i ~- .... 

~?cA i~2,"~I~ '.A, ' -" Branch3- 
"-~-~ ~Lo,',_7%_ ~,z i ',,," 

... ~ ~ .... ~-~ ', '. 

: Branch 2 Xs~/:  

• • ~ o = 0  

0 (a)  H / ('°: O(b ) 

Fig. I. Schematic representation of the dispersion surface for 
symmetric three-beam, 0, H, H',  Borrmann diffraction. (a) The 
intersection of the dispersion surface with the plane containing 
Laue point La, and the reciprocal-lattice points 0 and H. (b) A 
side view of (a) on the plane perpendicular to 0HLa. 
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more excited than YI. For a negative Sp. r, the 
excitation of the tie points has the same situation as 
that for a positive Se. r. 

In the experiment reported by Hart & Lang (1961), a 
variation on the two-beam and 220, Pendell6sung 
fringe :pacing due to the presence of the three-beam, 
000 220 311, Borrmann diffraction was observed. For 
this three-beam case, Sp, r is positive. The Pendell6sung 
fringe spacing of two-beam diffraction is inversely 
proportional to the separation between the dispersion 
sheets. When the three-beam case with Sp, r > 0 comes 
into play, the fringe spacing at ~ < 0 depends on the 
distance X~ X 2 of the two strongly excited tie points. 
[Since the Pendell6sung experiment involves an in- 
clined crystal surface, the lines Z 2 X 3 and W 2 ]13 (Fig. 
lb) are tilted accordingly.] At (0 > 0, the fringe spacing 
is inversely proportional to II2 II3. When the crystal 
surface is, for example, cut in such a way that lines 
Z z X  3 and W2 Y3 are parallel to the asymptotic line 
passing through Lo for branches 1 and 2 of Fig. 1 (b), 
then 

IXlX21 < ILIL31 < IY 21131. (11) 

L1L 3 is the separation between branches 1 and 2 for a 
two-beam H reflection. The inequality_ holds also for 
other inclined crystal surfaces. The 220 PendeIl6sung 
fringe spacing increased for ~0 < 0 and decreases for 
~0 > 0. For a negative Se, r, the situation is reversed. 
The theoretical ground on which the experiment (Hart 
& Lang, 1961) is based is correct. However, the 
method is impractical owing to the required wedge- 
shaped crystal, as long as the application to real crystal 
structure determination is concerned. 

The divergent-beam photograph (Huang & Post, 
1973) was used to provide phase information from the 
intensity distribution in the vicinity of a three-beam 
Borrmann diffraction point, in Post's (1977) experi- 
ment. The transmitted intensity of (9) depends not only 
on the term Dr(j)  related to the excitation, but also on 
the exponential term with the absorption from the 
imaginary part of K r and with the sinusoidal crys- 
tal-thickness dependence from the real part of K r. 
According to Ewald & Heno (1968), the modes with 
dispersion sheets closest to the Laue point have the 
lowest absorption coefficients. By considering only the 
excitation of the mode and its absorption, the three- 
beam transmitted intensity for a negative Se, r shows 
the intensity asymmetry about the exact three-beam 
point, i.e. (0 = 0. No intensity asymmetry is expected 
for a positive Se. r. These facts are correctly discussed 
by Post (1977). However, that the sinusoidal term in 
(9) plays an important role in the transmitted intensity 
was not considered by Post (1977). In fact, the 
asymmetry of the transmitted intensity appears for 
thick crystals with #t > 10 (see, for example, Fig. 6, of 
Post, Chang & Huang, 1977). Even for 
Fii l  Flt~Foo 2 = 0 the intensity asymmetry occurs (see 

Fig. 1 of Baiter, Feldman & Post, 1971). For a thin 
crystal, absorption influences the transmitted intensity 
less. The sinusoidal term dominates the exponent of (9). 
The intensity asymmetry expected for a negative Sp. r is 
smeared out by this sinusoidal variation, since the 
excitations of modes 1 and 3 + for ~ < 0 are almost 
equal to those of modes 2 and 3 + for ~0 > 0 (Fig. lb). It 
is clear that the crystal thickness effect outweighs the 
phase effect on the three-beam transmitted intensity. 
The use of the intensity distribution of three-beam 
Borrmann diffractions is therefore not well suited for 
phase determination. 

(b) Two overlapped three-beam Umweg reflection and 
N-beam (N > 3) diffraction 

The two overlapped Umweg reflections, 000 222 11 
and 000 222 111 were treated as a four-beam case by 
Chapman, Yoder & Colella (1981) for phase de- 
termination. This case ought to be correctly treated as a 
five-beam case_, since an additional 222 reflection is 
closer to the 111 reflection peak than the 111 one. The 
coupling reflection is 004. Supposing that this addi- 
tional three-beam, 000 222 222, reflection is very weak, 
the overlapped case has been assumed as a four-beam 
case. The corresponding dispersion relation is equal to 

%/1/F F:: :  Fh l  %F h i /  
F222 2' F133 Fl31 = 0 (12) 

F~i ~ F ~  2' Foo~ 

1ii Figi F002 

This equation involves many phase triplets and 
quartets. If one neglects the symmetry-related terms 
and treats the 002 as a forbidden reflection in spite 
of the asphericity of bonding electron in diamond 
structure (Ewald & H6nl, 1936), (12) still involves at 
least two phase triplets, S::~SIHS133 and S~$1 i lS1 3  I. 
The former is positive and the latter negative. It is very 
difficult to tell how the 222 reflected intensity would be 
influenced by these two phase triplets. The same 
argument can be applied to N-beam cases with N > 3. 
However, when the high-order phase products in these 
N-beam cases involve many symmetry-related re- 
flections, these phase products can be expressed in 
terms of lower-order phase multiplets with N < 3. 
These N-beam cases can be, in principle, used for phase 
determination (Jagodzinski, 1980). Furthermore, 
when the N-beam cases with N > 3 involve many weak 
secondary and coupling reflections such that only a 
three-beam interaction dominates the whole diffraction 
process, these N-beam cases can then be treated as 
three-beam cases for phase determination. 

(c) Three-beam Bragg reflection 

From the analysis given above, three-beam Bragg 
reflections, either Umweganregung (Renninger, 1937) 
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or Aufhellung (Wagner, 1920), should be used for phase 
determinations, since the reflected intensity according 
to (8), is least affected by crystal thickness and since 
the dispersion surface is also directly related to the 
phase triplet. A practical experimental method for 
phase determination is given by Chang (1981, 1982). 
The situation whether the secondary reciprocal-lattice 
point is entering (incoming) or leaving (outgoing) the 
Ewald sphere is one of the two key facts which affect 
the intensity of multiple Bragg reflection, the other 
being the phase. The theoretical consideration of the 
relation between the dispersion surface and these two 
key facts is given in the following. 

Fig. 2(a) is the 'projection' of the dispersion surface 
onto the 0HLa plane. The dispersion sheets for the 
three-beam case involving a symmetric Bragg re- 
flection H are schematically shown. Branches 1 and 2 
are the dispersion sheets associated with the symmetric 
Bragg reflection. They represent the 0 and n phases for 
the waveflelds inside the crystal. The region between 
branches 1 and 2 is the total reflection range. The 
horizontal axis, which is proportional to AO, is denoted 
as AO in the same figure. 

When the crystal is first set for the symmetric Bragg 
reflection H, the dispersion sheets, branches 1 and 2, 
are established. When the secondary reciprocal-lattice 
point then approaches the surface of the Ewald sphere, 
the starting point of Kb moves along branch 3 + for 
Se, r > 0. The shape of the dispersion sheets 1 and 2 is 
modified by the presence of this additional reflection 
H' .  At every angular setting, during the rotation of the 
secondary reciprocal-lattice point, the dispersion sur- 
face is excited by the incident X-ray beam at the tie 
points. For simplicity, the path of the moving K H, is 
projected on the A0--q plane, perpendicular to OH (Fig. 
2b), as the line IJ. The directions of motion, incoming 

(a) 
Crystal Surface 

: / / / / / Z / / / / / / / / I I _ / I / / / /  

M] N~C 
I / 1 " /  H 

Branch Ix'x,! ~/,~/~BranXch 2 

'-~"r i )~oZ " / I I ' I /ZLo/_, \i 

I Y ~ "  J 
g 1 , Ae 

~m . 

~o (b) 

and outgoing, are indicated in the same figure. The 
azimuthal angles at I and J are denoted as qm and qn" 
M and N in Fig. 2(a) are the entrance points on the 
crystal surface, corresponding to I and J. MN and NP 
are perpendicular to the crystal surface. It should be 
noticed that Fig. 2(a) is actually the combination of 
two intersections of the dispersion surface of tp m and qn" 
Only the effective dispersion sheets are shown. For q = 
(0,,,, there are three tie points, E, A, and B, excited. Only 
the tie points A and B, whose Poynting vectors point 
towards the interior of the crystal, are effectively 
excited. Similarly, C and G are the two effective tie 
points at q = qn" Since a tie point is the starting point 
for the propagation of the wavefield generated inside 
the crystal, the closer the two tie points are for a given 
q, the stronger the dynamical interaction that takes 
place. Because AB is smaller than CG, strong inter- 
action at qm generates a more intense diffracted beam 
towards the interior of the crystal than at q,. (The 
Poynting vectors at points A, B, C, and G point 
towards the reciprocal point 0.) For the conservation of 
total energy, the corresponding reflected intensity of the 
Bragg reflection H is therefore weaker at qm than at q,. 
This indicates that for a positive Se. r the reflected 
intensity on one side, q -- qm, of the multiple reflection 
peak (or dip), is lower than that on the other side, q = 
q~,- The situation is reversed if Sp,T is negative or the 
diffraction is at its outgoing position. 

Two Umweg reflections are considered as examples 
_ _  

for illustration: (i) 000 222 111 with Sp, r 
( = S ~ S ~ i S m )  > 0 and (ii) 000 222 113 with Sp, r 
(=S~$113S~ ~) < 0 of germanium for Cu Ka~ radi- 

10 -I 

~ 10-2 

10-3 

10-~ 
1 

10 -1 

10 -2 

10-3 

10-~ 

(a) 

i i i 

(b) i SP, t + 
P,T- / i  

i I i I i i 

ic) 
,T- 

O u t g o i n g  

~d) 

/ - 

~'=...JOutgoing 
I I I I I 

660 0 - 6 0 0  660 6 '-6;0 
q)lSeconds of arc ) 

Fig. 2. Schematic representation of the dispersion surface for 
symmetric three-beam, 0, H, and H' ,  Bragg reflection. (a) The 
projection of the dispersion surface on the 0HLa plane. (b) A 
bottom view of (a) on the plane perpendicular to 0HLa. 

Fig. 3. Calculated germanium 222 reflected intensity profiles for the 
three-beam U m w e g :  000 222 113, at the_incoming (a) and the 
outgoing (c) situations; for the 000 222 111 case: at the incoming 
(b) and the outgoing (d) situations. 



SHIH-LIN CHANG 521 

ation. The calculated intensity profiles obtained from 
(8) are shown in Fig. 3 for both cases at their incoming 
and outgoing positions. From these line profiles, the 
following relation is obtained for practical phase 
determination: 

Sp,e = S~. SR, (13) 

where Se, e is the experimentally determined sign of the 
phase triplet. S L is the sign defined from the line profile. 
S~ is negative for the line profiles in Fig. 3(a) and (d). 
S~ is positive for the line profiles in Figs. 3(b) and (c). 
(Assume that the line profiles are recorded from the 
right side to the left side on a rolling chart.) SR is 
determined from the sense of crystal rotation, either 
incoming or outgoing. By considering (7) and (8) of 
Cole, Chambers & Dunn (1962), S R is defined as the 
sign of the derivative" 

S k =  S - ~  ] .  (14) 

SR is therefore positive for the incoming and negative 
for the outgoing situations. 

Since multiple reflection patterns can be easily 
obtained by making a ~, scan on a four-circle 
single-crystal diffractometer, the sigh Se, e can be 
determined in a straight-forward manner from (13). 
There are, however, problems concerning its practical 
use, such as how to choose a proper primary reflection 
and the wavelength, and how to apply this method to 
mosaic crystals. Fortunately, the use of synchrotron 
provides an ideal means for solving these problems. On 
the other hand, conventional fine-focus X-ray tubes can 
also be employed to give reasonable conditions for the 
phase experiment if good crystals are used. Under these 
experimental conditions, a crystal structure, which 
could not be solved by the ordinary 'direct method', has 
been solved by using the present method. The results 
will be reported later (Hart & Chang, 1982). 

4. Conclusion 

The analysis shows that three-beam multiple diffraction 
must be used for experimental determinations of 
phases. The difficulty of solving this phase problem 
experimentally is mainly because the crystal thickness 
dominates the diffracted intensity of three-beam 
Borrmann diffraction and that the rotation of the 
secondary reciprocal-lattice point relative to the Ewald 
sphere has not been considered properly, at least for 
X-rays. By considering this relative rotation and phase 
effects in three-beam Bragg reflections, a direct 
experimental method for the determination of X-ray 
reflection phases is obtained (Chang, 1981, 1982). 
There remain, however, many practical problems which 
ought to be solved for further application to real crystal 
structure determination. 
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